
New Area Record for the AES Combined S-box/Inverse S-box

Arash Reyhani-Masoleh, Mostafa Taha and Doaa Ashmawy
Department of Electrical and Computer Engineering

Western University, London, Ontario, Canada

{areyhani,mtaha9,dashmawy}@uwo.ca

Abstract—The AES combined S-box/inverse S-box is a single con-
struction that is shared between the encryption and decryption data
paths of the AES. The currently most compact implementation of the
AES combined S-box/inverse S-box is Canright’s design, introduced
back in 2005. Since then, the research community has introduced
several optimizations over the S-box only, however the combined S-
box/inverse S-box received little attention. In this paper, we propose
a new AES combined S-box/inverse S-box design that is both smaller
and faster than Canright’s design. We achieve this goal by proposing
to use new tower field and optimizing each and every block inside the
combined architecture for this field. Our complexity analysis and ASIC
implementation results in the CMOS STM 65nm and NanGate 15nm
technologies show that our design outperforms the counterparts in terms
of area and speed.

I. INTRODUCTION

The implementation of the AES S-box is one of the most ex-

tensively studied areas of cryptography [1]. The S-box performs a

non-linear mapping between an 8-bit input to an 8-bit output, by

computing the multiplicative inverse in GF (28), followed by an

affine transformation and addition with a constant. The multiplicative

inverse can be computed in the native GF (28) representation [1],

however the implementation cost (area and delay) would be higher

than the cost of using composite/tower fields.
In 2001, Satoh et al. proposed to compute the S-box output by first

converting the field to an isomorphic representation in GF (((22)2)2),
where the multiplicative inversion can be performed efficiently, then

converting the output back to the corresponding representation in

GF (28) [2]. In 2005, Canright proposed an exhaustive search over

all the possible representations in GF (((22)2)2), expressed as poly-

nomial basis as well as normal basis (a total of 432 representations),

and proposed a very compact design for the S-box, the inverse S-box

and the combined S-box/inverse S-box [3], [4]. These designs served

as hardware benchmarks for low-area designs of AES.
Faster and/or more efficient S-boxes were proposed in [5]–[8],

while faster and/or more efficient combined S-boxes/inverse S-box

were proposed in [9]–[12]. In addition, an automated search for a

field representation in GF ((24)2) was conducted in [13], [14] to

optimize the area of high speed AES cores to be suitable for memory

encryption engines.
The research for a more compact S-box only was explored in a line

of work by Boyar et al. [15]–[17] and Reyhani-Masoleh et al. [8].

They proposed to move all the linear operations in the input and the

output of the composite/tower field inversion circuit to the input and

output isomorphic mappings, respectively. Then, logic-minimization

heuristics were proposed to reduce the number of XOR gates that

is required to implement the extended isomorphic mappings. The

currently smallest design of the AES S-box can be found in [8]. Note

that [8] used the composite field over GF ((24)2), whereas in this

paper and [15]–[17], the tower field over GF (((22)2)2) is considered.
To the best of our knowledge, the research for a combined S-

boxes/inverse S-box received little attention. The line of research that

uses extended isomorphic mappings cannot be ported to the com-

bined S-boxes/inverse S-box due to the high number of multiplexers

required between the isomorphic mappings and the inversion circuit.

The contributions in [18], [19] used a combined S-box/inverse S-

box that is based on the one introduced back in 2002 [20], which

required more resources than the one proposed by Canright. Another

compact design was proposed in [21] as an application for a new, non

standard cell, XOR gate. Despite using two different implementation

technologies, the hardware complexity (expressed in number of gates)

shows that Canright design was more compact. In fact, a very recent

contribution in [22] proposed an overall AES encryption/decryption

engine using no other than Canright combined S-box/inverse S-box

circuit. Protection against side-channel analysis was proposed in [23].

In this paper, we do not explicitly target side-channel protection. We

will explore side-channel protection as a future research target.

In this paper, we propose a combined S-box/inverse S-box circuit

using GF (((22)2)2) tower field representation in normal basis, that

is both smaller and faster than Canright design in [3], [4]. In order

to achieve this result goal, we propose the following contributions:

• We consider using isomorphic mapping for the decryption path

that is independent (different or the same) from the mapping for

the encryption path. This results in 32 unique mapping circuits

per field, whereas Canright design considered using the same

mapping for both encryption and decryption paths resulting in

only one mapping circuit per field. Since we have 16, all normal

basis, field representations in the tower field GF (((22)2)2), we

study a total of (16 × 32 = 512) mapping circuits and use the

most compact one (Sec. IV).

• For the new obtained tower field with the least complexities in

its mappings, we combine several small blocks into one block,

denoted as the exponentiation block, and propose new closed-

form formulations that make use of optimum gate sharing. The

exponentiation block is proposed in Sec. V.

• We propose new formulations for the subfield inversion and the

output multipliers, resembling the most compact designs to date.

This contribution is discussed in Sec. VI and Sec. VI.

• We code all the blocks in VHDL and provide their implementa-

tion results. Then, we compare the ASIC implementation results

of our entire scheme with the one proposed by Canright in two

CMOS technologies of STM 65nm and NanGate 15nm. Our

complexity analysis and implementation results show that our

design outperforms the counterparts. In addition, we validate

each and every block in the design using Matlab R© codes and

HDL testbenches.

II. PRELIMINARIES

A. S-box/inverse S-box Arithmetic Computations

The S-box computations are performed over the binary field

GF (28) generated by the irreducible polynomial q(x) = x8 + x4 +
x3 + x+ 1. Let g = [g7, · · · , g1, g0]tr and s = [s7, · · · , s1, s0]tr
be the vectors corresponding to the input and output of the S-box,

respectively. Then, the S-box computation consists of computing of

145978-1-5386-2613-9/18/$31.00 c©2018 IEEE

the multiplicative inverse of a non-zero input g ∈ GF (28), denoted

as f = g−1 ∈ GF (28), g �= 0 followed by the affine transformation,

i.e.,

s = Mf ⊕ h, (1)

where f = [f7, · · · , f1, f0]tr is the vector corresponding to the field

element f ∈ GF (28) and ⊕ is the mod-2 addition (XOR). The

inverse S-box reverses the S-box operation. From (1), the inverse

S-box computes

f = M−1(s ⊕ h), (2)

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, M−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and h = [01100011]tr . Then, the inverse S-box consists of adding

the constant h, followed by applying the inverse affine transformation

M−1 and then the multiplicative inversion to find the inverse S-box

output g = f−1, f �= 0.

B. Tower Field GF (((22)2)2) Construction

There are two different sets of field architectures, namely the tower

field GF (((22)2)2) and the composite field GF ((24)2) that can be

used for the AES S-box computations. Also, the subfield elements

can be represented in polynomial basis (PB) or normal basis (NB). In

this paper, we use the tower field GF (((22)2)2) over NB, similar to

the Canright’s scheme, but using different irreducible polynomials.

In our scheme, we convert a field element g = (g7, ..., g0) ∈
GF (28) to an isomorphic tower field GF (((22)2)2) defined using

the irreducible polynomial over GF ((22)2):

p(y) = y2 + y + ν = (y + γ)(y + γ16), (3)

where γ (its root) and ν are subfield elements in GF ((22)2)
that should be chosen so that this polynomial is irreducible over

GF ((22)2). Then, {γ, γ16} is the NB over GF ((22)2) and every

element g in GF (28) can be mapped to its tower field representation

over GF ((22)2) as g = Aγ + Bγ16, where A and B are subfield

elements in GF ((22)2).
Similarly, the subfield GF ((22)2) is generated using the irre-

ducible polynomial over GF (22) of

q(z) = z2 + z + η = (z + α)(z + α4), (4)

with its root α that generates the NB {α, α4} over GF (22). In (4),

η ∈ GF (22) should be selected so that q(z) is irreducible over

GF (22). Therefore, any subfield element A ∈ GF ((22)2) can be

represented with respect to the NB {α, α4} by A = A0α + A1α
4

where A0, A1 ∈ GF (22). In parts of the circuit proposed in this

paper, we use the redundant normal basis (RNB) {α, α4, 1} to

represent field elements over GF (22), where α+α4 = 1 ∈ GF (22).
Here, we use the hat notation to represent the coordinates with respect

to the RNB. Therefore, the element A can also be represented by

A = Â0α+ Â1α
4 + Â2, where Âi ∈ GF (22), and Ai = Âi + Â2

for i = 0, 1 as α+ α4 = 1.

To construct the binary field GF (22), the irreducible all-one-

polynomial (AOP) with degree 2, i.e.,

r(t) = t2 + t+ 1 = (t+ ω)(t+ ω2), (5)

Fig. 1. The overall architecture for the proposed combined S-box/inverse
S-box using GF (((22)2)2) in the NB representation.

is used to generate the NB {ω, ω2} over GF (2). Therefore, one can

represent the field elements A0, A1 ∈ GF (22) as A0 = a0ω+a1ω
2

and A1 = a2ω+a3ω
2, respectively. As a result, any subfield element

A = (a0a1a2a3) ∈ GF ((22)2) can be represented as

A = (a0ω + a1ω
2)α+ (a2ω + a3ω

2)α4, (6)

where ai are the binary coordinates. It is noted that we also use

the RNB {ω, ω2, 1} to represent an element over GF (22), where

ω + ω2 = 1 ∈ GF (2). Similarly, we use the hat notation for the

coordinates with respect to the RNB. Therefore, A0 can also be

represented as A0 = â0ω+ â1ω
2+ â2 where âi ∈ GF (2), i ∈ [0, 2]

are the coordinates of A0 with respect to the RNB. One can find

ai = âi ⊕ â2 for i = 0, 1 as ω + ω2 = 1.

C. Inversion over Tower Field

The multiplicative inverse of g = Aγ + Bγ16 in the tower field

GF (((22)2)2) can be written as g−1 = (g17)−1g16 [24], [25]. Let

us define D = g17 = (Aγ + Bγ16)(Bγ + Aγ16), which can be

simplified to

D = A×B + (A+B)2ν. (7)

Then, g−1 = D−1(Bγ + Aγ16). Assuming that g−1 = Wγ +
Zγ16, where W,Z ∈ GF ((22)2), the outputs of the inversion g−1 ∈
GF (((22)2)2) can be found by computing

W = B ×D−1 = B × E
Z = A×D−1 = A× E,

(8)

where E = D−1.

III. PROPOSED ARCHITECTURE

In this section, we introduce the overall architecture for the

combined proposed S-box/ inverse S-box. The proposed architecture

is shown in Figure 1. In the beginning, the input 8-bit g is processed

through the input isomorphic mapping, which generates two 8-bit

outputs, one for the encryption path, denoted as I , and one for the

decryption path, denoted as K. The input and output isomorphic

mappings are introduced in Sec. IV. The input multiplexers select

the inputs of the inversion circuit; A and B of 4-bit each. Here, we

use inverting multiplexers because they are both cheaper and faster

than the regular multiplexers.

Then, the inversion circuit is composed of three stages:

1) The exponentiation block (Sec. V) raises the input g to the

power 17 in GF (((22)2)2) to compute D in (7).

2) The subfield inversion block (Sec. VI) computes inversion over

GF ((22)2), to generate E = D−1 .

3) The output multipliers (Sec. VII) perform multiplication in

GF ((22)2), to compute the outputs W and Z in (8), while

resembles O = Wγ + Zγ16.

146 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

Finally, the output isomorphic mapping converts the outputs (W
and Z) into two corresponding outputs in the GF (28) field, one for

the encryption path, denoted as J , and one for the decryption path,

denoted as L. The output inverting multiplexers select the overall

output s = (s7, ..., s0) ∈ GF (28).
In this paper, we adopt the GF (((22)2)2) tower field with all NB

representations for the underlying fields. To make p(y) in (3) irre-

ducible, the constant ν in (3) can take any of the following 8 different

values: {[1000],[0100],[0010],[0001],[1110],[1101],[1011],[0111]}.

Here, The 4-bits of each value represent the coefficients of νi, i ∈
[0, 3] in ν = (ν0ω+ν1ω

2)α+(ν2ω+ν3ω
2)α4. Similarly, the constant

η in (4) can take any of the following 2 values: {[10],[01]}, where

the 2-bits represent the coefficients of η = η0ω+ η1ω
2. In total, we

explore 8× 2 = 16 different field representations.

IV. ISOMORPHIC MAPPINGS

In this section, we explore all the possible isomorphic mappings

that could be used to select the most compact ones. Isomorphic

mapping performs a one-to-one mapping between every element of

one field to a corresponding element in an isomorphic field. This

mapping preserves additive as well as multiplicative isomorphisms

and is mathematically represented by a matrix multiplication, where

all the elements of the matrix are ones or zeros.

The matrix for isomorphic mapping, denoted as X−1, can be found

by solving the following equations:

φi
2 = X−1 × φi

1, i ∈ [0, n− 2], (9)

where φ1 is a generator in the GF (28) AES field, φ2 is a generator

in the new GF (((22)2)2) field, and n is the size of the field (here,

n = 256). Note that in order to preserve multiplicative isomorphism,

the selected generator φ2 must also be a root of the AES GF (28)
irreducible polynomial as evaluated under the GF (((22)2)2) arith-

metic. Once such a generator is found (φ2), all its conjugate elements

φ2j

2 , j ∈ [1, 7] can also be used to build different mappings, i.e., 8

possible mappings per field.

At the output of the S-box, we would apply the inverse mapping

X so that: φi
1 = X × φi

2, i ∈ [0, n − 2]. Note that the X−1 and X
mappings can be used at the input and output, respectively, of either

the S-box, the inverse S-box, or both.

A. Asymmetric Isomorphic Mapping

In the proposed architecture (Figure 1), the affine transformation

(M) is multiplied by the isomorphic mappings (Xe or Xd) at the

output of the S-box as MXe and the input of the inverse S-box as

(MXd)
−1. Hence, the input isomorphic mapping will be represented

by a 16× 8 matrix denoted as Trin:[
I
K

]
= Trin × g =

[
X−1

e

(MXd)
−1

]
× g (10)

Similarly, the output isomorphic mapping will be a 16× 8 matrix

denoted as Trout:[
J
L

]
= Trout × O =

[
MXe

Xd

]
× O (11)

It is noted in [3], the same mapping X is considered for both

encryption and decryption, whereas we consider two independent

mappings (Xe and Xd) which could be different or the same. In [13],

[14], the authors used asymmetric mapping to build two completely

separate encryption and decryption engines over the same die, where

no gate-sharing was used. However, using asymmetric mapping

with gate sharing over a unified encryption/decryption data path is

proposed here for the first time, to the best of our knowledge. Since

we have 8 possible mappings per field in each data path, we can

build a total of 64 different isomorphic mappings, each consisting of

a set of Trin and a corresponding Trout.
Note that, in the NB representation, if φ2 = φ2Aγ + φ2Bγ

16 is a

generator, one of the conjugates generators would be: φ24

2 = φ2Bγ+
φ2Aγ

16. Hence, the isomorphic mappings that could be built using

these two generators would be row-wise related in the input mapping

X−1 and column-wise related in the output mapping X. These two

mappings are considered equivalent and can be realized using the

same circuit with only a change in the output notations. In general,

the mappings of φ2i

2 , i ∈ [4, 7] will be equivalent to the mappings

of φ2i

2 , i ∈ [0, 3], respectively. Therefore, despite having 64 different

isomorphic mappings, we end up having only 32 unique circuits.

As a result, in the next subsection, we study a total of 16 (field

representations) × 32 (mappings per field) = 512 unique isomorphic

mapping circuits.

B. Logic-Minimization Algorithms

Efficient implementation of mapping matrices is performed using

logic-minimization algorithms. The problem of finding the most

compact circuit to implement a matrix of isomorphic mapping is

called the Shortest Linear Program (SLP) problem and is known to

be NP-hard [15], [17]. The optimum solution can only be found using

exhaustive search. Indeed, Canright used exhaustive search in order

to find the most compact circuit [4]. However, it was shown by Boyar

et al. that the search conducted by Canright is cancellation-free [16],

[17], where XOR gates are never used to cancel out common terms,

i.e., Canright did not exhaust all the actually possible solutions. In

this paper, we use the Focused-Search logic-minimization algorithm

proposed in [8], which is a speed-optimized variant of exhaustive

search and is not cancellation-free. Despite having a relatively long

execution time, it is shown in [8] that Focused-Search is the currently

best logic-minimization algorithm.

C. The Proposed Mappings

After searching across all the 512 mappings, we propose to use

mappings that are obtained based on the tower field with ν =
[0010] = ωα4 and η = [01] = ω2. It is noted that we use a tower

field that is different from the one used by Canright [3]. Using (10)

and (11), the proposed input and output transformation matrices, Trin
and Trout, are shown in Table I.

The exact formulations to implement Trin and Trout are shown

in Table II. Note that these equations reflect the use of inverting

multiplexer at the input and output of the combined S-box/inverse

S-box because they require smaller area and lower delay than the

regular multiplexers. Also, some XOR gates (denoted with ⊕) were

replaced with XNOR gates (denoted with �) and NOT gates (denoted

with ()′) were added to incorporate the addition with the constant h
at the output of the encryption path and the input of the decryption

path, as required by (1) and (2). The delay of each signal is also

highlighted in the table. We provide the complexities of the mapping

blocks as follows.

Proposition 1. The input mapping Trin can be implemented using

19 gates (12 XOR2, 6 XNOR2, and 1 NOT), with a maximum delay

of 5DX , where DX is the delay of a 2-bit XOR2/XNOR2 gate. The

output mapping Trout can be implemented using 18 gates (4 XOR2,

13 XNOR2, 1 NOT), with a maximum delay of 4DX .

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 147

TABLE I
THE PROPOSED INPUT AND OUTPUT ISOMORPHIC MAPPINGS.

Trin=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0 0 1
1 1 1 0 0 1 1 1
1 1 1 0 0 0 0 1
0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 1
1 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 1
1 0 0 1 0 0 0 0
0 1 0 0 1 0 1 1
0 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0
1 1 0 1 0 0 0 0
0 1 1 1 0 0 1 1
0 0 0 1 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Trout=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 0
1 1 1 1 0 1 0 0
1 0 0 1 1 1 1 0
0 0 1 1 0 0 0 1
1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
1 1 0 1 0 1 1 1
1 1 0 1 1 1 1 0
1 0 0 0 0 0 0 1
1 0 1 1 1 1 0 1
0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

TABLE II
EQUATIONS USED TO IMPLEMENT THE PROPOSED ISOMORPHIC

MAPPINGS: (a) THE PROPOSED Trin , (b) THE PROPOSED Trout .

(a)
ia0 = ib3 ⊕ g4 3DX ia1 = t0 ⊕ ia3 4DX ia2 = ib3 ⊕ g7 3DX

ia3 = ib3 ⊕ g1 3DX ib0 = (g0)
′

0DX ib1 = kb1 � ka2 4DX

ib2 = ka2 � g2 4DX ib3 = t1 � g5 2DX ka0 = kb2 � g5 5DX

ka1 = g7 � g4 1DX ka2 = t2 ⊕ g1 3DX ka3 = g6 ⊕ g4 1DX

kb0 = t0 ⊕ g5 2DX kb1 = ka1 � g6 2DX kb2 = ia0 ⊕ g1 4DX

kb3 = ka3 ⊕ t2 3DX t0 = g7 ⊕ g2 1DX t1 = g6 ⊕ g0 1DX

t2 = t1 ⊕ g3 2DX

(b)
j7 = w3 � z1 1DX j6 = w1 ⊕ z1 1DX j5 = w0 ⊕ z2 1DX

j4 = j7 ⊕ w1 2DX j3 = j0 � tt1 4DX j2 = j5 � tt0 3DX

j1 = l7 � w3 2DX j0 = l7 � w0 2DX l7 = w2 � z3 1DX

l6 = j5 � tt1 4DX l5 = j2 ⊕ w1 4DX l4 = w0 � z3 1DX

l3 = j0 � tt0 3DX l2 = j1 � w1 3DX l1 = w3 � z3 1DX

l0 = (z0)
′

0DX tt0 = j7 � z0 2DX tt1 = j4 � z3 3DX

V. NEW EXPONENTIATION BLOCK

The exponentiation block in Figure 1 generates D = g17 as

required in (7). Since we selected ν = ωα4, (7) can be written

as D = A × B + (A + B)2ωα4 which requires multiplication,

squaring and scaling over GF ((22)2). In this section, we analyze

these operations to find the coordinates of D = (d0d1d2d3) =
(d0ω + d1ω

2)α+ (d2ω + d3ω
2)α4 for the new tower field.

A. Multiplication over GF ((22)2)

Let A = A0α+A1α
4 and B = B0α+B1α

4 be subfield elements

over GF ((22)2) where Ai, Bi ∈ GF (22), i = 0, 1. Also, lets use

the RNB representation to define the output of their multiplication

as C = A×B = Ĉ0α+ Ĉ1α
4 + Ĉ2, where Ĉ0, Ĉ1, Ĉ2 ∈ GF (22)

can be computed as

Ĉ0 = A0B0,

Ĉ1 = A1B1,

Ĉ2 = (A0 +A1)(B0 +B1)ω
2.

(12)

Here, we used αα4 = η as implied from (4), and η = ω2 following

the mapping selection in Sec. IV-C. As seen from (12), multiplication

in GF ((22)2) requires three multiplications over GF (22). Since the

polynomial used to define the GF (22) field in (5) is an AOP with

degree 2 (m = 2) and is irreducible, we use the type-I optimal normal

basis (ONB-I) multiplication scheme proposed in [26] for m = 2.

Specifically, we use equation (36) to represent the multiplication

operation as follows.

Lemma 1. From [26], let A0 = a0ω + a1ω
2 ∈ GF (22) and B0 =

b0ω+ b1ω
2 ∈ GF (22) be represented in the ONB-I {ω, ω2}. Then,

the coordinates of their multiplication, represented in the redundant

normal basis (RNB) {ω, ω2, 1}, can be calculated as follows: Ĉ0 =
A0B0 = a0b0ω + a1b1ω

2 + a01b01 where a01 = a0 ⊕ a1 and

b01 = b0 ⊕ b1.

Since A1 = a2ω + a3ω
2 ∈ GF (22) and B1 = b2ω + b3ω

2 ∈
GF (22), one can use Lemma 1 to find (A0 + A1)(B0 + B1) =
a02b02ω + a13b13ω

2 + apbp. As a result, (12) can be computed as

Ĉ0 = a0b0ω + a1b1ω
2 + a01b01

Ĉ1 = a2b2ω + a3b3ω
2 + a23b23

Ĉ2 = a13b13ω + apbpω
2 + a02b02,

(13)

where ajk = aj⊕ak and bjk = bj⊕bk for 0 ≤ j, k ≤ 3, and j �= k.

Also, ap = a02 ⊕ a13 and bp = b02 ⊕ b13 which are the parities of

A and B, respectively.

B. Squaring with Scaling

Lets denote V = (A + B)2ωα4 = V0α + V1α
4, with V0, V1 ∈

GF ((22)2). Using (12), one can find A2 = A2
0α + A2

1α
4 + (A0 +

A1)
2ω2 and similar expression for B2. Since (A+B)2 = A2+B2,

we can simplify computation of the coefficients of V to:

V0 = (A0 +A1 +B0 +B1)
2,

V1 = (A1 +B1)
2ω.

(14)

Representing the equations in GF (22), similar to (13), one can

find that

V0 = (a13 ⊕ b13)ω + (a02 ⊕ b02)ω
2,

V1 = (a2 ⊕ b2) + (a3 ⊕ b3)ω
2,

(15)

where a13 = a1⊕a3, a02 = a0⊕a2 and b13 = b1⊕b3, b02 = b0⊕b2.

C. New Exponentiation Computation

The output of exponentiation block, i.e., D, can be computed by

adding C = Ĉ0α + Ĉ1α
4 + Ĉ2 with V = V0α + V1α

4. Then,

one can obtain the coefficients of D with respect to the RNB as

D = D̂0α+ D̂1α
4 + D̂2, where

D̂0 = Ĉ0 + V0

D̂1 = Ĉ1 + V1

D̂2 = Ĉ2.

(16)

Using (13) and (15), we can simplify the RNB coefficients of D to:

D̂0 = (a0b0 ⊕ a13 ⊕ b13)ω + (a02 ⊕ b02 ⊕ a1b1)ω
2 + a01b01

D̂1 = a2b2ω + (a3b3 ⊕ a3 ⊕ b3)ω
2 + (a23b23 ⊕ a2 ⊕ b2)

D̂2 = a13b13ω + apbpω
2 + a02b02.

(17)

We can represent D in the NB as D = D0α+D1α
4, with Di =

D̂i+D̂2 for i = 0, 1. Then, the GF (22) coefficients of D = (d0ω+
d1ω

2)α+ (d2ω + d3ω
2)α4 can be found as:

d0 = (a01b01 ⊕ a02b02 ⊕ a0b0 ⊕ (a13 ∨ b13)),
d1 = (a01b01 ⊕ (a02 ∨ b02)⊕ a1b1 ⊕ apbp),
d2 = ((a2 ∨ b2)⊕ a13b13 ⊕ a23b23 ⊕ a02b02),
d3 = (a3b3 ⊕ apbp ⊕ (a23 ∨ b23)⊕ a02b02).

(18)

Here, we use a2 ⊕ b2 ⊕ a2b2 = a2 ∨ b2 to obtain d2. For the

computation in d3, we first replace a2⊕a3 and a3⊕b3 with a23 and

148 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

b23, respectively and then use them to simplify a23⊕b23⊕a23b23 as

a23∨b23. Also, for low cost implementation, we replace all AND and

OR operations in (18) to NAND and NOR operations, respectively,

without changing their functions.

Proposition 2. The exponentiation computation block, with original

formulations presented in (18), consists of 12+10=22 XOR2 (2-input

XOR), 8 NAND2 (2-input NAND), and 4 NOR2 (2-input NOR) gates

with the critical path delay of 4DX + DNAND where DX and

DNAND are the delays of one XOR2 gate and one NAND2 gate,

respectively.

VI. NEW SUBFIELD INVERSIONS OVER GF ((22)2)

Let D = (d0d1d2d3) be the input of the subfield inverter. In this

section, we derive the formulations for the output of the subfield

inverter, i.e., E = D−1 = (e0e1e2e3) = E0α+E1α
4 ∈ GF ((22)2),

where E0 = e0ω + e1ω
2, E1 = e2ω + e3ω

2 and ei ∈ GF (2),
0 ≤ i ≤ 3, are its coordinates. In the following, we introduce two

methods to calculate the coordinates of E.

A. Using Computations over GF (22)

To find the formulations for E, one can use an algebraic expression

of E = D−1 = (Dr)−1 × Dr−1, where r = 22×2−1
22−1

= 5

with arithmetic operations performed over GF (22). Hence, E =
(DD4)−1 × D4. Assuming that U = (DD4)−1 ∈ GF (22),
then E = UD1α + UD0α

4 = E0α + E1α
4. Since the in-

version over GF (22) is equal to squaring, one can obtain that

U = (D0D1 + (D0 +D1)
2ω2)2. Representing U in the RNB, i.e.,

U = û0ω + û1ω
2 + û2, and using reduction techniques similar to

the one presented in Sec. V, one can find that:

û0 = d1d3
û1 = (d0 ∨ d2)
û2 = (d01d23 ⊕ d13),

(19)

where we use d0d2 ⊕ d02 = d0 ∨ d2. Converting U back to the NB

results in U = u0ω + u1ω
2 with coefficients:

u0 = d01d23 ⊕ (d1 ∨ d3)
u1 = d01d23 ⊕ d13 ⊕ (d0 ∨ d2). (20)

Using (20) and Lemma 1, one can find E0 = UD1 = ê0ω +
ê1ω

2 + ê2 with coefficients equal to:

ê0 = d2(d01d23 ⊕ (d1 ∨ d3)),
ê1 = d3(d01d23 ⊕ d13 ⊕ (d0 ∨ d2)),
ê2 = u01d23,

(21)

where u01 = u0 ⊕ u1 = û0 ⊕ û1 = d1d3 ⊕ (d0 ∨ d2) and d23 =
d2 ⊕ d3. Then, the coordinates of E0 = e0ω + e1ω

2 represented in

the NB can be found as:

e0 = ê0 ⊕ ê2 and e1 = ê1 ⊕ ê2. (22)

Similarly, the coordinates of E1 = UD0 = ê3ω + ê4ω
2 + ê5 are

calculated as:

ê3 = d0(d01d23 ⊕ (d1 ∨ d3)),
ê4 = d1(d01d23 ⊕ d13 ⊕ (d0 ∨ d2)),
ê5 = u01d01,

(23)

and the coordinates of E1 = e2ω + e3ω
2 represented in NB can be

found as:

e2 = ê3 ⊕ ê5 and e3 = ê4 ⊕ ê5. (24)

TABLE III
THE TRUTH TABLE OF THE INVERTER OVER GF ((22)2).

d0d1d2d3 e0e1e2e3 d0d1d2d3 e0e1e2e3

0000
0001
0010
0011
0100
0101
0110
0111

0000
0100
1100
1000
0001
1010
1110
1101

1000
1001
1010
1011
1100
1101
1110
1111

0011
1011
0101
1001
0010
0111
0110
1111

d'0/2

d3/1

d'2/0
d0/2

d1/3

d'3/1

d1/3

d'3/1

d'2/0

d'3/1
d2/0

e0/2

e1/3

OAI22

OAI32

0/2 1/3d d

Fig. 2. The proposed subfield inverter block.

B. Using Combinational Circuit Design

The subfield inverter is a 4-bit input 4-bit output combinational

circuit which can be designed using the systematic way of designing

digital systems. The design starts with the truth table of the inverter.

We used Matlab R© to find the inversion truth table as shown in Table

III. Using this table one can obtain the following.

Lemma 2. Let E = D−1 represented by E = (e0e1e2e3) = E0α+
E1α

4 ∈ GF ((22)2), where E0 = e0ω+e1ω
2 and E1 = e2ω+e3ω

2.

Then, the coordinates of E0 and E1 are

e0 = d3(d0 ⊕ d1) ∨ d2(d
′
0 ∨ d3)

e1 = d′2d3(d0 � d1) ∨ d2(d1 ∨ d′3),
(25)

and

e2 = d1(d2 ⊕ d3) ∨ d0(d
′
2 ∨ d1)

e3 = d′0d1(d2 � d3) ∨ d0(d3 ∨ d′1),
(26)

respectively.

We designed and implemented the above formulations and several

other equivalent functions to obtain the optimum design with the least

area and delay in the ASIC implementation. In order to reduce the

area and improve the speed of the ASIC implementations of (25)

and (26), we found that their implementations using compound OR-

AND-Invert (OAI) gates, such as OAI22 and OAI32 gates, have

better implementation results instead of using AND/OR as well

as NAND/NOR gates. One can easily convert the formulations in

Lemma 2 to the following using Boolean algebra and De Morgan’s

laws. As a result, we conclude the following with its realization as

shown in Figure 2.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 149

Corollary 1. The coordinates of E0 can be found from

e0 = ((d′3 ∨ (d0 ⊕ d1)
′)(d′2 ∨ (d′0 ∨ d3)

′))′

e1 = ((d2 ∨ d′3 ∨ (d0 ⊕ d1))(d
′
2 ∨ (d1 ∨ d′3)

′))′.
(27)

Similarly, the coordinates of E1 can be found by switching all indices

in (27) between 0 and 2, i.e., 0 ↔ 2 and between 1 and 3, i.e., 1 ↔ 3.

Using 4 NOT gates at the inputs of Figure 2, one can obtain the

following regarding the time and space complexities of this subfield

inverter.

Proposition 3. The space complexity of the proposed subfield inverter

block over GF ((22)2) includes 4 NOR2, 2 XOR2, 2 OAI22, 2 OAI32

and 6 NOT gates. The time complexity due to gates for the proposed

subfield inverter is 1DOAI22 + 1DXOR2 + 1DNOT .

VII. NEW OUTPUT MULTIPLIERS

One can use the formulations presented in Subsection V-A to

obtain the formulations for two output multipliers that generate

Z = A × E and W = B × E. In this section, we further optimize

these formulations to make the output multipliers faster than the one

using these formulations directly. Starting with the formulations for

Z = A×E, let A be represented as in (6) and similarly represent E
as E = (e0ω+e1ω

2)α+(e2ω+e3ω
2)α4 ∈ GF ((22)2), where E is

the field element generated by the subfield inverter, with coordinates

of ei ∈ GF (2), i ∈ [0, 3]. Let us represent Z = A×E with respect

to the RNB as Z = A×E = Ẑ0α+ Ẑ1α
4 + Ẑ2. Then, using (13),

one can obtain

Ẑ0 = a0e0ω + a1e1ω
2 + a01e01

Ẑ1 = a2e2ω + a3e3ω
2 + a23e23,

Ẑ2 = a13e13ω + apepω
2 + a02e02.

(28)

To implement (28), the aij and ap signals are available from the

implementation of exponentiation block. However, 5 additional XOR

gates are required for the implementation of the eij and ep signals

used in (28). To reduce the critical path delay (CPD), we convert the

representations presented in (28) from the RNB to the NB. Using

a01e01 = a01e0 ⊕ a01e1, we can simplify Ẑ0 to

Ẑ0 = (a1e0 ⊕ a01e1)ω + (a0e1 ⊕ a01e0)ω
2. (29)

Similarly, using a23e23 = a23e2 ⊕ a23e3, Ẑ1 can be simplified to

Ẑ1 = (a3e2 ⊕ a23e3)ω + (a2e3 ⊕ a23e2)ω
2. (30)

The computation of ep is in the longest path which reduces the speed

of the output multiplier. To design a fast multiplier, we use ep =
e02 ⊕ e13 in the expression of Ẑ2 in (28), so that:

Ẑ2 = (a13e13 ⊕ a02e02)ω + (ape13 ⊕ a13e02)ω
2. (31)

One can write Z = Z0α + Z1α
4 = (z0ω + z1ω

2)α + (z2ω +
z3ω

2)α4, with Zi = Ẑi + Ẑ2 for i = 0, 1 and so the coordinates of

Z are as follows:

z0 = a1e0 ⊕ a01e1 ⊕ z4
z1 = a0e1 ⊕ a01e0 ⊕ z5
z2 = a3e2 ⊕ a23e3 ⊕ z4
z3 = a2e3 ⊕ a23e2 ⊕ z5,

(32)

where
z4 = a13e13 ⊕ a02e02
z5 = ape13 ⊕ a13e02.

(33)

Similarly, one can optimize the formulations for W = B × E
by replacing the coordinates of A by the ones of B to obtain the

coordinates of W = (w0ω + w1ω
2)α+ (w2ω + w3ω

2)α4 as:

w0 = b1e0 ⊕ b01e1 ⊕ w4

w1 = b0e1 ⊕ b01e0 ⊕ w5

w2 = b3e2 ⊕ b23e3 ⊕ w4

w3 = b2e3 ⊕ b23e2 ⊕ w5,

(34)

where
w4 = b13e13 ⊕ b02e02
w5 = bpe13 ⊕ b13e02.

(35)

Note that the two signals e02 = e0⊕e2 and e13 = e1⊕e3 are shared

among the two multipliers.

Instead of using AND gates, one can design the logical circuit

of these multipliers using NAND gates by simply replacing all

AND operations to NAND. Such replacements do not change the

multiplication operation because the two inputs of XOR gates are

complemented which result in no change at the output of XOR gates.

It is interesting to note that using NAND gates is cheaper and faster

in the ASIC implementation. As a result, one can obtain the space

and time complexities of the two output multipliers as follows.

Proposition 4. The output multipliers consist of 22 XOR2 and 24

NAND2 gates with the longest propagation delay of DNAND+3DX .

VIII. IMPLEMENTATION RESULTS AND COMPARISONS

In this section, we evaluate the implementation results of all the

proposed blocks along with the overall combined S-box/inverse S-box

circuit.

A. Complexity Analysis

TABLE IV
COMPLEXITY COMPARISON OF DIFFERENT COMBINED S-BOX/INVERSE

S-BOX DESIGNS.

Design HW Complexity GEs∗
Zhang [27] 154X + 36AD + 16M 385
Jeon [19] 116X + 58AD + 2OR + 10NT + 16M 347

Ahmad [21] 123X + 35AD + 16M 321.75
Canright [3] 94X + 34ND + 6NR + 2NT + 16MI 257.5
This Work 81X + 32ND + 8NT + 8NR + 2O2 + 2O3 + 16MI 243.5

∗All GE values are estimated using STM 65 technology where X is
XOR2/XNOR2 =2GEs, AD is AND2 = 1.25GEs, ND is NAND2 = 1GE,
OR is OR2 = 1.5GEs, NR isNOR2 = 1GE, NT is NOT = 0.75GEs, O2 is
OAI22 = 1.75GEs, O3 is OAI32 = 2GEs,M is MUX21 = 2GEs, and MI is
MUXI21 = 1.75GEs.

Table IV compares the hardware complexity analysis of the pro-

posed combined S-box/inverse S-box against the schemes proposed in

the contributions [27], [19], [21] and [3]. The estimate implementa-

tion areas (in GEs) are computed based on the area of individual gates

in the STM 65nm technology library. [14] proposed the implemen-

tation area of the overall AES encryption and/or decryption engines,

but no complexity analysis of the underlying combined S-box/inverse

S-box was reported. However, from the information provided in the

paper, we derived the complexities of the exponentiation block and

output multipliers. Each multiplier in [14] requires 16 NAND2 gates

and 15 XOR2 gates with no gate sharing. Therefore, the two output

multipliers requires 30 XOR2 and 32 NAND2 gates (30×2+32 = 92
GEs) which has higher area than our design, i.e., 22 XOR2 and 24

NAND2 (22×2+24 = 68 GEs). Based on the parameters used in [14]

(α = c and β = 2), the scaling with α requires 1 XOR2 gate and the

combined squaring with scaling with β requires 3 XOR2 gates. Also,

150 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

TABLE V
ASIC SYNTHESIS RESULTS FOR THE THREE BLOCKS OF THE INVERSION

AND THE ENTIRE INVERSION OVER THE TOWER FIELD AT STM 65NM

TECHNOLOGY.

Code
Imp. Ref

Area CPD Pow.
μm2 GE ns μW

Exp.
1 Str.

(18)
116.48 56 0.208 6.96

2 Beh. 120.12 57.75 0.206 6.02

Sub.
Inv.

3 Str. (22),(24) 66.56 32 0.214 3.03
4 Str. Fig. 2 41.6 20 0.070 1.58
5 Beh. (27) 44.72 21.5 0.083 1.26

Out. 6 Str.
(32),(34)

141.44 68 0.171 6.74
Mul. 7 Beh. 143.52 69 0.192 5.67

Cascading the Three Blocks

Tower 8 Str. #1,4,6 299.52 144 0.607 25.02
Inv. 9 Beh. #2,5,7 309.4 148.75 0.762 23.22

adding the complexity of the two subfield adders (2× 4 = 8 XOR2)

and one multiplier (16 NAND2 gates and 15 XOR2), the overall

exponentiation block requires 27 XOR2 and 16 NAND2 (= 70 GEs)

which has more area than ours, i.e., 22 XOR2 + 8 NAND2 + 4 NOR2

(= 56 GEs). Table IV shows that Canright combined S-box/inverse

S-box is the smallest design among the previous work.

B. ASIC Implementation Results

We use VHDL coding as a design entry to the Synopsys Design

Vision R© for logic synthesis. All the individual blocks and the

combined S-box/inverse S-box, as proposed here and the previous

work of [3], are evaluated using the STM 65nm and the NanGate

15nm CMOS standard-cell libraries. Note that results are collected

at conservative wire load models and the critical path delays (CPDs)

are reported by the CAD tool when there is no load to the external

output.

1) Individual Blocks: We code all blocks of the proposed com-

bined S-box/inverse S-box in two different modeling methods using

VHDL. The first type of modeling is the structural modeling where

we code all the blocks exactly as presented in equations and/or

figures, with no optimization in the gate selection by the CAD

tool. Then, we use behavioral modeling by defining the input/output

relationship of each block and allowing optimization by the CAD

tool to select the most compact circuit. In Table V, we compare the

results of structural modeling against behavioral modeling for each

block of the proposed combined S-box/inverse S-box. In this table,

the power consumptions are included as reported by the CAD tool at

relaxed constraints using a clock frequency of 100 MHz. Note that

the maximum clock frequency can be obtained from the CPD. Later,

we evaluate the combined S-box/inverse S-box design under more

tight constraints.

Table V lists synthesis results for the proposed exponentiation

block (Sec. V), the proposed subfield inversion block (Sec. VI-A

and Sec. VI-B) and the output multipliers (Sec. VII) using both

structural modeling and behavioral modeling. The table shows that

structural modeling of all the blocks results in a more compact

design than behavioral modeling. As a result, we propose the overall

GF (((22)2)2) tower field inversion consisting of Codes #1, 4 and

6 for the exponentiation, subfield inversion and output multipliers

blocks, respectively.

2) Overall Design: Due to code availability, in this section, we

compare the actual ASIC implementations results of the proposed

combined S-box/inverse S-box against the most compact previous

TABLE VI
ASIC SYNTHESIS RESULTS FOR THE COMBINED S-BOX/INVERSE S-BOX

AT STM 65NM TECHNOLOGY.

Design Impl.
Area Del. M. Freq. Pow.

μm2 GE ns MHz μW

Canright [3]
Beh. 624 300 1.321 757.00 61.36

CPD: 2DOAI22 + 1DXOR3 + 18DXOR2 + 4DNAND2

Canright [3]
Str. 537.16 258.25∗ 1.304 766.87 56.86

CPD: 2DAOI22 + 20DXOR2 + 3DNAND2 + 1DNOR2

This Work
Str. 508.04 244.25∗ 1.159 862.81 55.00

CPD: 2DAOI22 + 1DOAI32 + 17DXOR2 + 2DNAND2

∗Compared to Table IV, one NOT gate (0.75 GEs) was added to use AOI22
gates instead of inverting MUX gates.

work, as proposed in [3]. Table VI highlights the reported results.

It is noted that when we compiled the Canright original code, the

tool used 16 non-inverting MUX cells which have more area than

the inverting ones (2 × 16 GEs as compared to 1.75 × 16 GEs in

the STM 65nm). To have a fair comparison, we changed this code

to structural modeling and used 16 AOI22 (1.75× 16 GEs) and one

NOT gate (0.75 GEs) for their selectors. As a result, we added one

NOT gate to the design of Canright as well as our proposed design.

Table VI also shows the CPD as reported by the CAD tool. As shown

in Table VI, our proposed architecture of the combined S-box/inverse

S-box is, not only more compact than the currently best design in

the literature (in [3], [4]), but also faster and requires lower power

consumption.

In Figure 3, we evaluate the proposed combined S-box/inverse

S-box design against previous work, in [3], under different delay

constraints as an input design requirement for the CAD tool. Here,

we enforce using the exact same gate types, by using strict structural

modeling, while allowing the CAD tool to use gates with different

output strengths to improve the delay of each gate at a slight increase

of the design area. Figure 3 shows that the proposed combined S-

box/inverse S-box circuit results in a more compact design than

the previous work, in [3], across all the targeted delay constraints.

In fact, our design could be synthesized at tight delay constraints

where Canright scheme became not synthesizable (slack violated).

The highest speed of our design is 1.43 GHz (CPD = 0.7 nsec) in

the STM 65nm technology and 6.25 GHz (CPD = 160 psec) in the

NanGate 15nm technology at the corresponding areas of 451.5 GEs

and 358.5 GEs, respectively.

IX. CONCLUSION

In this paper, we have proposed a new design for the AES

combined S-box/inverse S-box. Using an exhaustive search, we have

found a new tower field which results in more compact transformation

blocks. For the new field, we have derived new formulations and

designed corresponding circuits. We have designed several circuits

for each block and selected the optimized ones. Moreover, we have

verified our designs by extensive simulation codes and implemented

our design along with the best one available in the literature. Our

analysis and the ASIC implementation results show that our new

combined S-box/inverse S-box outperforms the best scheme available

in the literature in terms of the area and delay. To the best of our

knowledge, these implementation results set a new record for the

combined S-box/inverse S-box.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 151

0.6 0.8 1 1.2 1.4 1.6 1.8

Input Delay Constraint (ns)

150

200

250

300

350

400

450

500

550

600

A
re

a
(G

E
s)

 a
t S

T
M

65
nm

Canright Beh.
Canright Str.
This Work

(a)

150 160 170 180 190 200 210 220 230 240

Input Delay Constraint (ps)

240

260

280

300

320

340

360

380

400

420

440

A
re

a
(G

E
s)

 a
t N

an
G

at
e1

5n
m Canright Beh.

Canright Str.
This Work

(b)

Fig. 3. Area in GEs of the proposed combined S-box/inverse S-box circuit
as compared to previous work (in [3]) at different input delay constraints. (a)
Synthesis targeting the STM 65nm library. (b) Synthesis targeting the NanGate
15nm library.

ACKNOWLEDGMENT

We would like to thank the reviewers of ARITH-25 for their con-

structive comments and the Canadian Microelectronics Corporation

(CMC) Microsystems for providing the required infrastructure and

the CAD tools used in this work. This work was supported by the

Natural Sciences and Engineering Research Council (NSERC) of

Canada under the Discovery and Discovery Accelerate Supplement

(DAS) Grants awarded to A. Reyhani-Masoleh.

REFERENCES

[1] J. Daemen and V. Rijmen, The Design of Rijndaels: AES - The
Advanced Encryption Standard, ser. Information Security and Cryptog-
raphy. Springer, 2002.

[2] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Ri-
jndael hardware architecture with S-box optimization,” in Advances in
Cryptology - ASIACRYPT, Proceedings, 2001, pp. 239–254.

[3] D. Canright, “A very compact S-box for AES,” in Cryptographic
Hardware and Embedded Systems - CHES, Proceedings, 2005, pp. 441–
455.

[4] ——, “A very compact Rijndael S-box,” Naval Postgraduate School
Technical Report: NPS-MA-05-001, Tech. Rep., 2005.

[5] J. Boyar and R. Peralta, “A small depth-16 circuit for the AES S-box,”
in Information Security and Privacy Conference - SEC, Proceedings,
2012, pp. 287–298.

[6] J. Boyar, M. Find, and R. Peralta, “Low-depth, low-size circuits for
cryptographic applications,” in Boolean Functions and their Applications
- BFA, Proceedings, 2017.

[7] R. Ueno, N. Homma, Y. Sugawara, Y. Nogami, and T. Aoki, “Highly
efficient GF(28) inversion circuit based on redundant GF arithmetic
and its application to AES design,” in Cryptographic Hardware and
Embedded Systems - CHES, Proceedings, 2015, pp. 63–80.

[8] A. Reyhani-Masoleh, M. Taha, and D. Ashmawy, “Smashing the imple-
mentation records of AES S-box,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2018 (2), p. 39, 2018.

[9] P. C. Liu, H. C. Chang, and C. Y. Lee, “A 1.69 gb/s area-efficient AES
crypto core with compact on-the-fly key expansion unit,” in European
Solid-State Circuits Conference - ESSCIRC, Proceedings, Sept 2009, pp.
404–407.

[10] S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. K.
Hsu, H. Kaul, M. A. Anders, and R. K. Krishnamurthy, “53 gbps native
GF (24)2 composite-field AES-encrypt/decrypt accelerator for content-
protection in 45 nm high-performance microprocessor,” IEEE Journal
of Solid-State Circuits, vol. 46, no. 4, pp. 767–776, 2011.

[11] K. Nekado, Y. Nogami, and K. Iokibe, “Very short critical path imple-
mentation of AES with direct logic gates,” in Advances in Information
and Computer Security - IWSEC, Proceedings, 2012, pp. 51–68.

[12] R. Ueno, S. Morioka, N. Homma, and T. Aoki, “A high throughput/gate
AES hardware architecture by compressing encryption and decryption
datapaths - toward efficient cbc-mode implementation,” in Cryptographic
Hardware and Embedded Systems - CHES, Proceedings, 2016, pp. 538–
558.

[13] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agar-
wal, S. Hsu, G. Chen, and R. Krishnamurthy, “340 mv-1.1 v, 289
gbps/w, 2090-gate NanoAES hardware accelerator with area-optimized
encrypt/decrypt GF (24)2 polynomials in 22 nm tri-gate CMOS,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 4, pp. 1048–1058, 2015.

[14] S. Gueron and S. Mathew, “Hardware implementation of AES using
area-optimal polynomials for composite-field representation GF((24)2)
of GF(28),” in 23nd IEEE Symposium on Computer Arithmetic - ARITH,
Proceedings, 2016, pp. 112–117.

[15] J. Boyar, P. Matthews, and R. Peralta, “On the shortest linear straight-
line program for computing linear forms,” in Mathematical Foundations
of Computer Science - MFCS, Proceedings, 2008, pp. 168–179.

[16] J. Boyar and R. Peralta, “A new combinational logic minimization
technique with applications to cryptology,” in Experimental Algorithms,
9th International Symposium - SEA, Proceedings, 2010, pp. 178–189.

[17] J. Boyar, P. Matthews, and R. Peralta, “Logic minimization techniques
with applications to cryptology,” Journal of Cryptology, vol. 26, no. 2,
pp. 280–312, 2013.

[18] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES implementation on
a grain of sand,” IEE Proceedings - Information Security, vol. 152, pp.
13–20, October 2005.

[19] Y.-S. JEON, Y.-J. KIM, and D.-H. LEE, “A compact memory-free
architecture for the AES algorithm using resource sharing methods,”
Journal of Circuits, Systems and Computers, vol. 19, no. 05, pp. 1109–
1130, 2010.

[20] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An asic implementation
of the AES SBoxes,” in Topics in Cryptology — CT-RSA 2002, 2002,
pp. 67–78.

[21] N. Ahmad and S. R. Hasan, “Low-power compact composite field
AES S-Box/inv S-Box design in 65nm CMOS using novel XOR gate,”
Integration, the VLSI Journal, vol. 46, no. 4, pp. 333 – 344, 2013.

[22] S. Banik, A. Bogdanov, and F. Regazzoni, “Compact circuits for com-
bined AES encryption/decryption,” Journal of Cryptographic Engineer-
ing, pp. 1–15, Oct 2017.

[23] D. Canright and L. Batina, “A very compact “perfectly masked” S-Box
for AES,” in Applied Cryptography and Network Security, 2008, pp.
446–459.

[24] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,” Information and computation,
vol. 78, no. 3, pp. 171–177, 1988.

[25] C. Paar, “Efficient VLSI architectures for bit parallel computation in
galios fields,” Ph.D. dissertation, University of Duisburg-Essen, Ger-
many, 1994.

[26] A. Reyhani-Masoleh and M. A. Hasan, “Efficient multiplication beyond
optimal normal bases,” IEEE Trans. Computers, vol. 52, no. 4, pp. 428–
439, 2003.

[27] X. Zhang and K. K. Parhi, “High-speed vlsi architectures for the aes
algorithm,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 9, pp. 957–967, 2004.

152 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

